

The variations of cloud liquid water amount on temperature over SHEBA site

Bing Lin¹, Patrick Minnis¹, and Alice Fan²

¹ NASA Langley Research Center ²Science Applications International Corporation

NOAA Geophysical Fluid Dynamics Laboratory Princeton, NJ, Sept. 18, 2002

Acknowledgement

- Discussions with Y. Hu, D. Young, K.-M. Xu, D. Spangenberg, and A. Cheng are very helpful for this study.
- This research was supported by NASA FIRE and CERES Projects, and DOE ARM Program.
- NOAA ETL cloud radar data from SHEBA data band.

Outline

- 1. Background
 - cloud temperature feedback/water clouds only -- LWP or τ
- 2. SHEBA Data: AVHRR,
- 3. MWR, IRT, MMCR, ice camp meteor. obs., atmospheric. profiles
- 3. Results: change rate, causes
- 4. Summary

former USSR data

Surface Temp. Warming

satellite optical depth

(b)

T (°C)

Tselioudis et al. 1992

f = -0.08/KT > 280K

f = -0.01/KT > 265K

Data sets

- SHEBA ice camp measurements:
 - Microwave Radiometer (MWR)
 LWP
 - Infrared thermometer (IRT)
 cloud base temperature and height
 - Radiosonde atmospheric profile
 - Meteorological measurements Ts, Ps, q_v
 - Millimeter Cloud Radar (MMCR) cloud height, thickness
- Satellite measurements:
 - IR cloud top temperature and height
 - Cloud cover

MWR vs PVM LWP

SHEBA/FIRE

Cloud top height

SHEBA May-July 1998

Data sets (cont.)

- Matched in 25km radius and 30 minutes
- SHEBA year November 1997 ~ October 1998
- FIRE ACE May 1998 ~ July 1998
- Analyzed LWP data: LWP > 0.02mm

Results

- LWP vs temperature
- LWP or LWC with environmental parameters
- Relative change rate (f number)
- Determinate factor for LWP increase with temperature
 - Humidity and LCL

LWP vs temperature

f = 0.07/K for mean LWP & T

satellite-ground matched data

LWC vs temperature

surface humidity

theoretical LCL

LCL vs Ts

SHEBA May-July 1998

Cloud base vs LCL

SHEBA May-July 1998

Conclusions

- LWP increases with temperature due to cloud thickness increase
 - No significant change of LWC with temperature
- Relative change rate f = 3.3%/K
- Humidity increase explains part of the cloud vertical structure change (LCL and moist static energy)
- Hope CERES/Terra or Aqua data provide largescale & long-term LWP or τ dependence on temperature, and radiative feedback of the dependence

Introduction

- Cloud optical depth on temperature or cloud liquid water path (LWP) & or cloud liquid water content (LWC)
- Regional, temperature, & cloud type dependent: aircraft, satellite, and ground based observations
- Water clouds only

SGP Summer data

monthly SHEBA LWP

Zhang et al. 2002

monthly SHEBA cloud cover

Zhang et al. 2002

LWP vs surface temperature

relative change rate

Pixel level data:

$$f = dLWP/dT/LWP = 0.033/K$$

Averaged data from monthly statistics:
 f = 0.07/K

 For climate study, the f values from original samples may be more realistic since it is weighted by population